Constants
- bioturing_connector.typing package
- Module contents
ChunkSize
InputMatrixType
Species
StudyType
StudyType.BBROWSER
StudyType.BCS
StudyType.COSMX
StudyType.DSP
StudyType.H5AD
StudyType.H5_10X
StudyType.MTX_10X
StudyType.PROTEOMICS_OME_TIF
StudyType.PROTEOMICS_QPTIFF
StudyType.RDS
StudyType.TILE_DB
StudyType.TSV
StudyType.VISIUM
StudyType.VISIUM_ANN
StudyType.VISIUM_RDS
StudyType.VIZGEN
StudyType.VIZGEN_V2
StudyType.XENIUM
StudyUnit
TechnologyType
- Module contents
bioturing_connector package
bioturing_connector.bbrowserx_connector module
Python package for submitting/getting data from BBrowserX
- class bioturing_connector.bbrowserx_connector.BBrowserXConnector(host: str, token: str, ssl: bool = True)[source]
Bases:
Connector
Create a connector object to submit/get data from BBrowserX
- Parameters:
- hoststr
The URL of the BBrowserX server, only support HTTPS connection
- tokenstr
The API token to verify authority. Generated in-app.
Methods
assign_standardized_meta
(species, group_id, ...)Assign metadata value to a standardized term on ontologies tree
get_all_studies_info_in_group
(species, group_id)Get info of all studies within group.
get_barcodes
(species, study_id)Get barcodes of a study.
get_features
(species, study_id)Get features of a study.
get_metadata
(species, study_id)Get full metadata of a study.
get_ontologies_tree
(species, group_id)Get standardized ontologies tree
get_shared_s3_of_group
(group_id)Get all available groups of current token
Get all available groups of current token
Get all available groups of current token
list_all_custom_embeddings
(species, study_id)List all custom embeddings of a study
query_genes
(species, study_id, gene_names[, ...])Query genes expression of a study.
retrieve_custom_embedding
(species, study_id, ...)Retrieve an embedding array of a study
submit_metadata_from_dataframe
(species, ...)Submit metadata dataframe directly to a study
submit_metadata_from_local
(species, ...)Submit metadata to a study with local path
submit_metadata_from_s3
(species, study_id, ...)Submit metadata to a study with s3 path
submit_metadata_from_shared_s3
(species, ...)Submit metadata to a study with s3 path
submit_study_from_local
(group_id, batch_info)Submit one or multiple datasets from local / server.
submit_study_from_s3
(group_id[, s3_id, ...])Submit one or multiple datasets from s3 bucket to BBrowserX.
submit_study_from_shared_s3
(group_id, ...[, ...])Submit one or multiple datasets from s3 bucket to BBrowserX.
Test the connection to the host
upload_chunk
(file_names, files, chunk_size)- meta private:
- assign_standardized_meta(species, group_id, study_id, metadata_field, metadata_value, root_name, leaf_name)
Assign metadata value to a standardized term on ontologies tree
- Parameters:
- speciesbioturing_connector.typing.Species
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr
ID of the group to submit the data to.
- study_idstr
ID of the study (uuid)
- metadata_fieldstr
~ column name of meta dataframe in platform (eg: author’s tissue)
- metadata_valuestr
~ metadata value within the metadata field (eg: normal lung)
- root_namestr
name of root in btr ontologies tree (eg: tissue)
- leaf_namestr
name of leaf in btr ontologies tree (eg: lung)
- Returns:
- Submission statusbool | str
True or Error log
- get_all_studies_info_in_group(species: str, group_id: str)
Get info of all studies within group.
- Parameters:
- speciesbioturing_connector.typing.Species.typing.Species
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr,
Group hash id (uuid)
- Returns:
- List of studies’ infoList[dict]
- In which:
‘uuid’: the uuid of study, which will be used in further steps,
‘study_hash_id’: the displaying id of study on platform,
‘created_by’: email of person who submitted the study,
- get_barcodes(species: str, study_id: str)
Get barcodes of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- barcodesList[]
- get_features(species: str, study_id: str)
Get features of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- FeaturesList[]
- get_metadata(species: str, study_id: str)
Get full metadata of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- Metadatapd.DataFrame
- get_ontologies_tree(species, group_id)
Get standardized ontologies tree
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr
ID of the group.
- Returns:
- Ontologies treeDict[Dict]
- In which:
‘name’: name of the node, which will be used in further steps
Get all available groups of current token
- Parameters:
- group_idstr,
Group hash id (uuid)
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
‘id’: uuid of the s3 bucket, which will be used in further steps,
‘bucket’: bucket of s3,
‘prefix’: prefix of s3,
( s3_path = s3://[bucket]/[prefix]/ )
- get_user_groups()
Get all available groups of current token
- Returns:
- List of groups’ infoList[dict]
- In which:
‘group_id’: uuid of the group, which will be used in further steps,
‘group_name’: displaying name of the group
- get_user_s3()
Get all available groups of current token
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
‘id’: uuid of the s3 bucket, which will be used in further steps,
‘bucket’: bucket of s3,
‘prefix’: prefix of s3,
( s3_path = s3://[bucket]/[prefix]/ )
- list_all_custom_embeddings(species: str, study_id: str)
List all custom embeddings of a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- List of embeddings’ infoList[dict]
- In which:
‘embedding_id’: the uuid used in further steps
‘embedding_name’: displaying name on platform
- query_genes(species: str, study_id: str, gene_names: List[str], unit: str = 'raw')
Query genes expression of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- gene_namesList[str]
Querying gene names.
If gene_names=[], full matrix will be returned
- unitbioturing_connector.typing.StudyUnit. Default ‘raw’
Expression unit
- Support:
bioturing_connector.typing.StudyUnit.UNIT_LOGNORM.value
bioturing_connector.typing.StudyUnit.UNIT_RAW.value
- Returns:
- expression_matrixcsc_matrix
Expression matrix, shape=(n_cells, n_genes)
- retrieve_custom_embedding(species: str, study_id: str, embedding_id: str)
Retrieve an embedding array of a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- embedding_idstr,
Embedding id (uuid)
- Returns:
- embedding_arrnp.ndarray with shape (n_cells x n_dims)
- submit_metadata_from_dataframe(species: str, study_id: str, group_id: str, df: DataFrame)
Submit metadata dataframe directly to a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- dfpandas DataFrame,
Barcodes must be in df.index!!!!
- Returns:
- Submission statusbool | str
True or Error log
- submit_metadata_from_local(species: str, study_id: str, group_id: str, file_path: str)
Submit metadata to a study with local path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathlocal path leading to metadata file,
Barcodes must be in the first column
File suffix must be in .tsv/.csv
- Returns:
- Submission statusbool | str
True or Error log
- submit_metadata_from_s3(species: str, study_id: str, group_id: str, file_path: str, s3_id: str | None = None)
Submit metadata to a study with s3 path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathstr,
Path in s3 bucket leading to metadata file,
- Notes:
Barcodes must be in the fist column
File suffix must be in .tsv/.csv
- File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
realpath: ‘s3://bucket/folder/metadata.tsv’
inputpath: ‘folder/metadata.tsv’
- s3_idstr, Optional
ID of s3 bucket. Default: None
If s3_id is not provided, we will use the first s3 bucket configured on the platform.
- Returns:
- Submission statusbool | str
True or Error log
Submit metadata to a study with s3 path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathstr,
Path in s3 bucket leading to metadata file,
- Notes:
Barcodes must be in the fist column
File suffix must be in .tsv/.csv
- File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
realpath: ‘s3://bucket/prefix/metadata.tsv’
inputpath: ‘prefix/metadata.tsv’
- shared_s3_idstr
ID of shared s3 bucket
- Returns:
- Submission statusbool | str
True or Error log
- submit_study_from_local(group_id: str, batch_info: object, study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', input_matrix_type: str = 'normalized', study_type: int = 2, min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, mt_percentage: int | float | None = None, skip_dimred: bool = False, chunk_size: int = 104857600)[source]
Submit one or multiple datasets from local / server.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- batch_infoList[dict]
File path and batch name information.
- Example:
- For h5ad format:
- [{
‘matrix’: ‘local_path/GSE128223_1.h5ad’
}, {…}]
- For mtx format:
- [{
‘name’: ‘data_1’,
‘matrix’: ‘local_path/data_1/matrix.mtx’,
‘features’: ‘local_path/data_1/features.tsv’,
‘barcodes’: ‘local_path/data_1/barcodes.tsv’,
}, {…}]
- study_idstr, optional
Will be the displaying name of study (eg: PBMC_3K). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- input_matrix_typebioturing_connector.typing.InputMatrixType, optional
Is the input matrix already normalized or not?. Default: ‘normalized’
- Support:
- bioturing_connector.typing.InputMatrixType.NORMALIZED.value
(will skip BioTuring normalization, h5ad: use adata.X)
- bioturing_connector.typing.InputMatrixType.RAW.value
(apply BioTuring normalization, h5ad: use adata.raw.X)
- study_typebioturing_connector.typing.StudyType, optional
Format of the study. Default: bioturing_connector.typing.StudyType.H5AD.value
- Support:
bioturing_connector.typing.StudyType.BBROWSER.value
bioturing_connector.typing.StudyType.H5_10X.value
bioturing_connector.typing.StudyType.H5AD.value
bioturing_connector.typing.StudyType.MTX_10X.value
bioturing_connector.typing.StudyType.BCS.value
bioturing_connector.typing.StudyType.RDS.value
bioturing_connector.typing.StudyType.TSV.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- mt_percentageint, optional
Maximum number of mitochondria genes percentage required for a cell to pass filtering. Default: 100.
Ranging from 0 to 100
- skip_dimredbool, optional
Skip BioTuring pipeline if set to True (only appliable when input is a scanpy/seurat object). Default: False
- chunk_sizebioturing_connector.typing.ChunkSize, optional
Size of each separated chunk for uploading. Default: 104857600
- Support:
bioturing_connector.typing.ChunkSize.CHUNK_5_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_100_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_500_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_1_GB.value
- Returns:
- Submission statusbool | str
True or Error log
- submit_study_from_s3(group_id: str, s3_id: str | None = None, batch_info: List[dict] = [], study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', input_matrix_type: str = 'normalized', study_type: int = 2, min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, mt_percentage: int | float | None = None, skip_dimred: bool = False)[source]
Submit one or multiple datasets from s3 bucket to BBrowserX.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- s3_idstr, Optional
ID of s3 bucket. Default: None
If s3_id is not provided, we will use the first s3 bucket configured on the platform.
- batch_infoList[dict]
File path and batch name information, the path DOES NOT included the bucket path!
- Example:
- For h5ad format:
- [{
‘matrix’: ‘s3_path/GSE128223_1.h5ad’
}, {…}]
- For mtx format:
- [{
‘matrix’: ‘s3_path/data_1/matrix.mtx’,
‘features’: ‘s3_path/data_1/features.tsv’,
‘barcodes’: ‘s3_path/data_1/barcodes.tsv’,
}, {…}]
- For tiledb format:
- [{
‘folder’: ‘s3_path/GSE128223_1’
}, {…}]
- study_idstr, optional
Will be the displaying name of study (eg: PBMC_3K). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- skip_dimredBool, optional
Skip BioTuring pipeline if set to True. Default: False
(only applicable when input is a scanpy/seurat object).
- input_matrix_typebioturing_connector.typing.InputMatrixType, optional
Is the input matrix already normalized or not?. Default: ‘normalized’
- Support:
- bioturing_connector.typing.InputMatrixType.NORMALIZED.value
(will skip BioTuring normalization, h5ad: use adata.X)
- bioturing_connector.typing.InputMatrixType.RAW.value
(apply BioTuring normalization, h5ad: use adata.raw.X)
- study_typebioturing_connector.typing.StudyType, opitonal
Format of the study. Default: bioturing_connector.typing.StudyType.H5AD.value
- Support:
bioturing_connector.typing.StudyType.BBROWSER.value
bioturing_connector.typing.StudyType.H5_10X.value
bioturing_connector.typing.StudyType.H5AD.value
bioturing_connector.typing.StudyType.MTX_10X.value
bioturing_connector.typing.StudyType.BCS.value
bioturing_connector.typing.StudyType.RDS.value
bioturing_connector.typing.StudyType.TSV.value
bioturing_connector.typing.StudyType.TILE_DB.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- mt_percentageint, optional
Maximum number of mitochondria genes percentage required for a cell to pass filtering. Default: 100
Ranging from 0 to 100
- Returns:
- Submission statusbool | str
True or Error log
Submit one or multiple datasets from s3 bucket to BBrowserX.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- shared_s3_idstr
ID of s3 bucket.
- batch_infoList[dict]
File path and batch name information, the path DOES NOT included the bucket path!
- Example:
- For h5ad format:
- [{
‘matrix’: ‘s3_path/GSE128223_1.h5ad’
}, {…}]
- For mtx format:
- [{
‘matrix’: ‘s3_path/data_1/matrix.mtx’,
‘features’: ‘s3_path/data_1/features.tsv’,
‘barcodes’: ‘s3_path/data_1/barcodes.tsv’,
}, {…}]
- For tiledb format:
- [{
‘folder’: ‘s3_path/GSE128223_1’
}, {…}]
- study_idstr, optional
Will be the displaying name of study (eg: PBMC_3K). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- skip_dimredBool, optional
Skip BioTuring pipeline if set to True. Default: False
(only applicable when input is a scanpy/seurat object).
- input_matrix_typebioturing_connector.typing.InputMatrixType, optional
Is the input matrix already normalized or not?. Default: ‘normalized’
- Support:
- bioturing_connector.typing.InputMatrixType.NORMALIZED.value
(will skip BioTuring normalization, h5ad: use adata.X)
- bioturing_connector.typing.InputMatrixType.RAW.value
(apply BioTuring normalization, h5ad: use adata.raw.X)
- study_typebioturing_connector.typing.StudyType, opitonal
Format of the study. Default: bioturing_connector.typing.StudyType.H5AD.value
- Support:
bioturing_connector.typing.StudyType.BBROWSER.value
bioturing_connector.typing.StudyType.H5_10X.value
bioturing_connector.typing.StudyType.H5AD.value
bioturing_connector.typing.StudyType.MTX_10X.value
bioturing_connector.typing.StudyType.BCS.value
bioturing_connector.typing.StudyType.RDS.value
bioturing_connector.typing.StudyType.TSV.value
bioturing_connector.typing.StudyType.TILE_DB.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- mt_percentageint, optional
Maximum number of mitochondria genes percentage required for a cell to pass filtering. Default: 100
Ranging from 0 to 100
- Returns:
- Submission statusbool | str
True or Error log
- test_connection()
Test the connection to the host
- Returns:
- connection statusstr
bioturing_connector.lens_bulk_connector module
Python package for submitting/getting data from Lens Bulk
- class bioturing_connector.lens_bulk_connector.LensBulkConnector(host: str, token: str, ssl: bool = True)[source]
Bases:
Connector
Create a connector object to submit/get data from BioTuring Lens Bulk (Visium/GeoMx DSP)
- Parameters:
- hoststr
The URL of the LENS BULK server, only support HTTPS connection
- tokenstr
The API token to verify authority. Generated in-app.
Methods
assign_standardized_meta
(species, group_id, ...)Assign metadata value to a standardized term on ontologies tree
get_all_studies_info_in_group
(species, group_id)Get info of all studies within group.
get_barcodes
(species, study_id)Get barcodes of a study.
get_features
(species, study_id)Get features of a study.
get_metadata
(species, study_id)Get full metadata of a study.
get_ontologies_tree
(species, group_id)Get standardized ontologies tree
get_shared_s3_of_group
(group_id)Get all available groups of current token
Get all available groups of current token
Get all available groups of current token
list_all_custom_embeddings
(species, study_id)List all custom embeddings of a study
query_genes
(species, study_id, gene_names[, ...])Query genes expression of a study.
retrieve_custom_embedding
(species, study_id, ...)Retrieve an embedding array of a study
submit_metadata_from_dataframe
(species, ...)Submit metadata dataframe directly to a study
submit_metadata_from_local
(species, ...)Submit metadata to a study with local path
submit_metadata_from_s3
(species, study_id, ...)Submit metadata to a study with s3 path
submit_metadata_from_shared_s3
(species, ...)Submit metadata to a study with s3 path
submit_study_from_local
(group_id, batch_info)Submit one or multiple data folders.
submit_study_from_s3
(group_id[, s3_id, ...])Submit one or multiple data folders.
submit_study_from_shared_s3
(group_id, ...[, ...])Submit one or multiple data folders.
Test the connection to the host
upload_chunk
(file_names, files, chunk_size)- meta private:
- assign_standardized_meta(species, group_id, study_id, metadata_field, metadata_value, root_name, leaf_name)
Assign metadata value to a standardized term on ontologies tree
- Parameters:
- speciesbioturing_connector.typing.Species
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr
ID of the group to submit the data to.
- study_idstr
ID of the study (uuid)
- metadata_fieldstr
~ column name of meta dataframe in platform (eg: author’s tissue)
- metadata_valuestr
~ metadata value within the metadata field (eg: normal lung)
- root_namestr
name of root in btr ontologies tree (eg: tissue)
- leaf_namestr
name of leaf in btr ontologies tree (eg: lung)
- Returns:
- Submission statusbool | str
True or Error log
- get_all_studies_info_in_group(species: str, group_id: str)
Get info of all studies within group.
- Parameters:
- speciesbioturing_connector.typing.Species.typing.Species
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr,
Group hash id (uuid)
- Returns:
- List of studies’ infoList[dict]
- In which:
‘uuid’: the uuid of study, which will be used in further steps,
‘study_hash_id’: the displaying id of study on platform,
‘created_by’: email of person who submitted the study,
- get_barcodes(species: str, study_id: str)
Get barcodes of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- barcodesList[]
- get_features(species: str, study_id: str)
Get features of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- FeaturesList[]
- get_metadata(species: str, study_id: str)
Get full metadata of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- Metadatapd.DataFrame
- get_ontologies_tree(species, group_id)
Get standardized ontologies tree
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr
ID of the group.
- Returns:
- Ontologies treeDict[Dict]
- In which:
‘name’: name of the node, which will be used in further steps
Get all available groups of current token
- Parameters:
- group_idstr,
Group hash id (uuid)
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
‘id’: uuid of the s3 bucket, which will be used in further steps,
‘bucket’: bucket of s3,
‘prefix’: prefix of s3,
( s3_path = s3://[bucket]/[prefix]/ )
- get_user_groups()
Get all available groups of current token
- Returns:
- List of groups’ infoList[dict]
- In which:
‘group_id’: uuid of the group, which will be used in further steps,
‘group_name’: displaying name of the group
- get_user_s3()
Get all available groups of current token
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
‘id’: uuid of the s3 bucket, which will be used in further steps,
‘bucket’: bucket of s3,
‘prefix’: prefix of s3,
( s3_path = s3://[bucket]/[prefix]/ )
- list_all_custom_embeddings(species: str, study_id: str)
List all custom embeddings of a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- List of embeddings’ infoList[dict]
- In which:
‘embedding_id’: the uuid used in further steps
‘embedding_name’: displaying name on platform
- query_genes(species: str, study_id: str, gene_names: List[str], unit: str = 'raw')
Query genes expression of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- gene_namesList[str]
Querying gene names.
If gene_names=[], full matrix will be returned
- unitbioturing_connector.typing.StudyUnit. Default ‘raw’
Expression unit
- Support:
bioturing_connector.typing.StudyUnit.UNIT_LOGNORM.value
bioturing_connector.typing.StudyUnit.UNIT_RAW.value
- Returns:
- expression_matrixcsc_matrix
Expression matrix, shape=(n_cells, n_genes)
- retrieve_custom_embedding(species: str, study_id: str, embedding_id: str)
Retrieve an embedding array of a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- embedding_idstr,
Embedding id (uuid)
- Returns:
- embedding_arrnp.ndarray with shape (n_cells x n_dims)
- submit_metadata_from_dataframe(species: str, study_id: str, group_id: str, df: DataFrame)
Submit metadata dataframe directly to a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- dfpandas DataFrame,
Barcodes must be in df.index!!!!
- Returns:
- Submission statusbool | str
True or Error log
- submit_metadata_from_local(species: str, study_id: str, group_id: str, file_path: str)
Submit metadata to a study with local path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathlocal path leading to metadata file,
Barcodes must be in the first column
File suffix must be in .tsv/.csv
- Returns:
- Submission statusbool | str
True or Error log
- submit_metadata_from_s3(species: str, study_id: str, group_id: str, file_path: str, s3_id: str | None = None)
Submit metadata to a study with s3 path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathstr,
Path in s3 bucket leading to metadata file,
- Notes:
Barcodes must be in the fist column
File suffix must be in .tsv/.csv
- File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
realpath: ‘s3://bucket/folder/metadata.tsv’
inputpath: ‘folder/metadata.tsv’
- s3_idstr, Optional
ID of s3 bucket. Default: None
If s3_id is not provided, we will use the first s3 bucket configured on the platform.
- Returns:
- Submission statusbool | str
True or Error log
Submit metadata to a study with s3 path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathstr,
Path in s3 bucket leading to metadata file,
- Notes:
Barcodes must be in the fist column
File suffix must be in .tsv/.csv
- File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
realpath: ‘s3://bucket/prefix/metadata.tsv’
inputpath: ‘prefix/metadata.tsv’
- shared_s3_idstr
ID of shared s3 bucket
- Returns:
- Submission statusbool | str
True or Error log
- submit_study_from_local(group_id: str, batch_info: object, study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', study_type: int = 7, chunk_size: int = 104857600)[source]
Submit one or multiple data folders.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- batch_infoList[dict]
File path and batch name information
- Example:
- For DSP format:
- [{
‘name’: ‘data_1’,
‘matrix’: ‘local_path/data_1/matrix.xlsx’,
‘image’: ‘local_path/data_1/image.ome.tiff’,
}, {…}]
- For Visium format:
- [{
‘name’: ‘data_1’,
‘matrix’: ‘local_path/data_1/matrix.h5’,
‘image’: ‘local_path/data_1/image.tiff’
‘position’: ‘local_path/data_1/tissue_positions_list.csv’
‘scale’: ‘local_path/data_1/scalefactors_json.json’
}, {…}]
- For Visium RDS format:
- [{
‘matrix’: ‘local_path/GSE128223_1.rds’
}, {…}]
- For Visium Anndata format:
- [{
‘matrix’: ‘local_path/GSE128223_1.h5ad’
}, {…}]
- study_idstr, optional
Will be the displaying name of study (eg: VISIUM_PBMC). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_typebioturing_connector.typing.StudyType, optional
Format of the study. Default: bioturing_connector.typing.StudyType.DSP.value
- Support:
bioturing_connector.typing.StudyType.DSP.value
bioturing_connector.typing.StudyType.VISIUM.value
bioturing_connector.typing.StudyType.VISIUM_RDS.value
bioturing_connector.typing.StudyType.VISIUM_ANN.value
- chunk_sizebioturing_connector.typing.ChunkSize, optional
Size of each separated chunk for uploading. Default: 104857600
- Support:
bioturing_connector.typing.ChunkSize.CHUNK_5_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_100_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_500_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_1_GB.value
- Returns:
- Submission statusbool | str
True or Error log
- submit_study_from_s3(group_id: str, s3_id: str | None = None, batch_info: List[dict] = [], study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', study_type: int = 7)[source]
Submit one or multiple data folders.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- s3_idstr, Optional
ID of s3 bucket. Default: None
If s3_id is not provided, we will use the first s3 bucket configured on the platform.
- batch_infoList[dict]
File path and batch name information, the path DOES NOT include the bucket path!
- Example:
- For DSP format:
- [{
‘matrix’: ‘s3_path/data_1/matrix.xlsx’,
‘image’: ‘s3_path/data_1/image.ome.tiff’,
}, {…}]
- For Visium format:
- [{
‘matrix’: ‘s3_path/data_1/matrix.h5’,
‘image’: ‘s3_path/data_1/image.tiff’
‘position’: ‘s3_path/data_1/tissue_positions_list.csv’
‘scale’: ‘s3_path/data_1/scalefactors_json.json’
}, {…}]
- For Visium RDS format:
- [{
‘matrix’: ‘s3_path/GSE128223_1.rds’
}, {…}]
- For Visium Anndata format:
- [{
‘matrix’: ‘s3_path/GSE128223_1.h5ad’
}, {…}]
- study_idstr, optional
Will be name of study (eg: VISIUM_PBMC). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_typebioturing_connector.typing.StudyType, optional
Format of the study. Default: bioturing_connector.typing.StudyType.DSP.value
- Support:
bioturing_connector.typing.StudyType.DSP.value
bioturing_connector.typing.StudyType.VISIUM.value
bioturing_connector.typing.StudyType.VISIUM_RDS.value
bioturing_connector.typing.StudyType.VISIUM_ANN.value
- Returns:
- Submission statusbool | str
True or Error log
Submit one or multiple data folders.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- shared_s3_idstr
ID of s3 bucket.
- batch_infoList[dict]
File path and batch name information, the path DOES NOT include the bucket path!
- Example:
- For DSP format:
- [{
‘matrix’: ‘s3_path/data_1/matrix.xlsx’,
‘image’: ‘s3_path/data_1/image.ome.tiff’,
}, {…}]
- For Visium format:
- [{
‘matrix’: ‘s3_path/data_1/matrix.h5’,
‘image’: ‘s3_path/data_1/image.tiff’
‘position’: ‘s3_path/data_1/tissue_positions_list.csv’
‘scale’: ‘s3_path/data_1/scalefactors_json.json’
}, {…}]
- For Visium RDS format:
- [{
‘matrix’: ‘s3_path/GSE128223_1.rds’
}, {…}]
- For Visium Anndata format:
- [{
‘matrix’: ‘s3_path/GSE128223_1.h5ad’
}, {…}]
- study_idstr, optional
Will be name of study (eg: VISIUM_PBMC). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_typebioturing_connector.typing.StudyType, optional
Format of the study. Default: bioturing_connector.typing.StudyType.DSP.value
- Support:
bioturing_connector.typing.StudyType.DSP.value
bioturing_connector.typing.StudyType.VISIUM.value
bioturing_connector.typing.StudyType.VISIUM_RDS.value
bioturing_connector.typing.StudyType.VISIUM_ANN.value
- Returns:
- Submission statusbool | str
True or Error log
- test_connection()
Test the connection to the host
- Returns:
- connection statusstr
bioturing_connector.lens_sc_connector module
Python package for submitting/getting data from Lens SC
- class bioturing_connector.lens_sc_connector.LensSCConnector(host: str, token: str, ssl: bool = True)[source]
Bases:
Connector
Create a connector object to submit/get data from BioTuring Lens Single-cell (Xenium/Cosmx/Vizgen/Proteomics)
- Parameters:
- hoststr
The URL of the LENS SC server, only support HTTPS connection
- tokenstr
The API token to verify authority. Generated in-app.
Methods
assign_standardized_meta
(species, group_id, ...)Assign metadata value to a standardized term on ontologies tree
get_all_studies_info_in_group
(species, group_id)Get info of all studies within group.
get_barcodes
(species, study_id)Get barcodes of a study.
get_features
(species, study_id)Get features of a study.
get_metadata
(species, study_id)Get full metadata of a study.
get_ontologies_tree
(species, group_id)Get standardized ontologies tree
get_shared_s3_of_group
(group_id)Get all available groups of current token
Get all available groups of current token
Get all available groups of current token
list_all_custom_embeddings
(species, study_id)List all custom embeddings of a study
query_genes
(species, study_id, gene_names[, ...])Query genes expression of a study.
retrieve_custom_embedding
(species, study_id, ...)Retrieve an embedding array of a study
submit_metadata_from_dataframe
(species, ...)Submit metadata dataframe directly to a study
submit_metadata_from_local
(species, ...)Submit metadata to a study with local path
submit_metadata_from_s3
(species, study_id, ...)Submit metadata to a study with s3 path
submit_metadata_from_shared_s3
(species, ...)Submit metadata to a study with s3 path
submit_study_from_local_lens_sc
(group_id, ...)Submit multiple single cell - spatial folders.
submit_study_from_local_proteomics
(group_id, ...)Submit one Proteomics image.
submit_study_from_s3_lens_sc
(group_id[, ...])Submit multiple single cell - spatial folders.
submit_study_from_s3_proteomics
(group_id[, ...])Submit one Proteomics image.
submit_study_from_shared_s3_lens_sc
(...[, ...])Submit multiple single cell - spatial folders.
submit_study_from_shared_s3_proteomics
(group_id)Submit one Proteomics image.
Test the connection to the host
upload_chunk
(file_names, files, chunk_size)- meta private:
- assign_standardized_meta(species, group_id, study_id, metadata_field, metadata_value, root_name, leaf_name)
Assign metadata value to a standardized term on ontologies tree
- Parameters:
- speciesbioturing_connector.typing.Species
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr
ID of the group to submit the data to.
- study_idstr
ID of the study (uuid)
- metadata_fieldstr
~ column name of meta dataframe in platform (eg: author’s tissue)
- metadata_valuestr
~ metadata value within the metadata field (eg: normal lung)
- root_namestr
name of root in btr ontologies tree (eg: tissue)
- leaf_namestr
name of leaf in btr ontologies tree (eg: lung)
- Returns:
- Submission statusbool | str
True or Error log
- get_all_studies_info_in_group(species: str, group_id: str)
Get info of all studies within group.
- Parameters:
- speciesbioturing_connector.typing.Species.typing.Species
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr,
Group hash id (uuid)
- Returns:
- List of studies’ infoList[dict]
- In which:
‘uuid’: the uuid of study, which will be used in further steps,
‘study_hash_id’: the displaying id of study on platform,
‘created_by’: email of person who submitted the study,
- get_barcodes(species: str, study_id: str)
Get barcodes of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- barcodesList[]
- get_features(species: str, study_id: str)
Get features of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- FeaturesList[]
- get_metadata(species: str, study_id: str)
Get full metadata of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- Metadatapd.DataFrame
- get_ontologies_tree(species, group_id)
Get standardized ontologies tree
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- group_idstr
ID of the group.
- Returns:
- Ontologies treeDict[Dict]
- In which:
‘name’: name of the node, which will be used in further steps
Get all available groups of current token
- Parameters:
- group_idstr,
Group hash id (uuid)
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
‘id’: uuid of the s3 bucket, which will be used in further steps,
‘bucket’: bucket of s3,
‘prefix’: prefix of s3,
( s3_path = s3://[bucket]/[prefix]/ )
- get_user_groups()
Get all available groups of current token
- Returns:
- List of groups’ infoList[dict]
- In which:
‘group_id’: uuid of the group, which will be used in further steps,
‘group_name’: displaying name of the group
- get_user_s3()
Get all available groups of current token
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
‘id’: uuid of the s3 bucket, which will be used in further steps,
‘bucket’: bucket of s3,
‘prefix’: prefix of s3,
( s3_path = s3://[bucket]/[prefix]/ )
- list_all_custom_embeddings(species: str, study_id: str)
List all custom embeddings of a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- Returns:
- List of embeddings’ infoList[dict]
- In which:
‘embedding_id’: the uuid used in further steps
‘embedding_name’: displaying name on platform
- query_genes(species: str, study_id: str, gene_names: List[str], unit: str = 'raw')
Query genes expression of a study.
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- gene_namesList[str]
Querying gene names.
If gene_names=[], full matrix will be returned
- unitbioturing_connector.typing.StudyUnit. Default ‘raw’
Expression unit
- Support:
bioturing_connector.typing.StudyUnit.UNIT_LOGNORM.value
bioturing_connector.typing.StudyUnit.UNIT_RAW.value
- Returns:
- expression_matrixcsc_matrix
Expression matrix, shape=(n_cells, n_genes)
- retrieve_custom_embedding(species: str, study_id: str, embedding_id: str)
Retrieve an embedding array of a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- embedding_idstr,
Embedding id (uuid)
- Returns:
- embedding_arrnp.ndarray with shape (n_cells x n_dims)
- submit_metadata_from_dataframe(species: str, study_id: str, group_id: str, df: DataFrame)
Submit metadata dataframe directly to a study
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- dfpandas DataFrame,
Barcodes must be in df.index!!!!
- Returns:
- Submission statusbool | str
True or Error log
- submit_metadata_from_local(species: str, study_id: str, group_id: str, file_path: str)
Submit metadata to a study with local path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathlocal path leading to metadata file,
Barcodes must be in the first column
File suffix must be in .tsv/.csv
- Returns:
- Submission statusbool | str
True or Error log
- submit_metadata_from_s3(species: str, study_id: str, group_id: str, file_path: str, s3_id: str | None = None)
Submit metadata to a study with s3 path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathstr,
Path in s3 bucket leading to metadata file,
- Notes:
Barcodes must be in the fist column
File suffix must be in .tsv/.csv
- File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
realpath: ‘s3://bucket/folder/metadata.tsv’
inputpath: ‘folder/metadata.tsv’
- s3_idstr, Optional
ID of s3 bucket. Default: None
If s3_id is not provided, we will use the first s3 bucket configured on the platform.
- Returns:
- Submission statusbool | str
True or Error log
Submit metadata to a study with s3 path
- Parameters:
- speciesbioturing_connector.typing.Species,
Species of the study.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_idstr,
uuidv4 of study
- group_idstr,
ID of the group containing study id
- file_pathstr,
Path in s3 bucket leading to metadata file,
- Notes:
Barcodes must be in the fist column
File suffix must be in .tsv/.csv
- File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
realpath: ‘s3://bucket/prefix/metadata.tsv’
inputpath: ‘prefix/metadata.tsv’
- shared_s3_idstr
ID of shared s3 bucket
- Returns:
- Submission statusbool | str
True or Error log
- submit_study_from_local_lens_sc(group_id: str, batch_info: List[dict], study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', study_type: int = 11, min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, neg_controls_percentage: int | float | None = None, chunk_size: int = 104857600)[source]
Submit multiple single cell - spatial folders.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- batch_infoList[dict]
File path and batch name information
- Example:
- [{
‘name’: ‘dataset_1’,
‘folder’: ‘server_path/dataset_folder_1’,
}, {…}]
- study_idstr, optional
Will be the displaying name of study (eg: COSMX_BRAIN). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_typebioturing_connector.typing.StudyType, optional
Format of the study. Default: bioturing_connector.typing.StudyType.XENIUM.value
- Support:
bioturing_connector.typing.StudyType.VIZGEN.value
bioturing_connector.typing.StudyType.COSMX.value
bioturing_connector.typing.StudyType.XENIUM.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- neg_controls_percentageint, optional
Maximum number of control/negative genes percentage required for a cell to pass filtering. Default: 100
Ranging from 0 to 100
- chunk_sizebioturing_connector.typing.ChunkSize, optional
Size of each separated chunk for uploading. Default: 104857600
- Support:
bioturing_connector.typing.ChunkSize.CHUNK_5_MB.value bioturing_connector.typing.ChunkSize.CHUNK_100_MB.value bioturing_connector.typing.ChunkSize.CHUNK_500_MB.value bioturing_connector.typing.ChunkSize.CHUNK_1_GB.value
- Returns:
- Submission statusbool | str
True or Error log
- submit_study_from_local_proteomics(group_id: str, batch_info: dict, study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, chunk_size: int = 104857600)[source]
Submit one Proteomics image.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- batch_infoList[]
File path and batch name information
- Example:
- {
‘image’: ‘server_path/image.ome.tiff’
}
- study_idstr, optional
Will be the displaying name of study (eg: CODEX_BRAIN). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- chunk_sizebioturing_connector.typing.ChunkSize, optional
Size of each separated chunk for uploading. Default: 104857600.
- Support:
bioturing_connector.typing.ChunkSize.CHUNK_5_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_100_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_500_MB.value
bioturing_connector.typing.ChunkSize.CHUNK_1_GB.value
- Returns:
- Submission statusbool | str
True or Error log
- submit_study_from_s3_lens_sc(group_id: str, s3_id: str | None = None, batch_info: List[dict] = [], study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', study_type: int = 11, min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, neg_controls_percentage: int | float | None = None)[source]
Submit multiple single cell - spatial folders.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- s3_idstr, Optional
ID of s3 bucket. Default: None
If s3_id is not provided, we will use the first s3 bucket configured on the platform.
- batch_infoList[dict]
File path and batch name information, the path DOES NOT include the bucket path configured on platform!
- Example:
- [{
‘name’: ‘study_1’,
‘folder’: ‘s3_path/study_folder’,
}, {…}]
- study_idstr, optional
Will be the displaying name of study (eg: COSMX_BRAIN). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_typebioturing_connector.typing.StudyType, optional
Format of the study. Default: bioturing_connector.typing.StudyType.XENIUM.value.
- Support:
bioturing_connector.typing.StudyType.VIZGEN.value
bioturing_connector.typing.StudyType.COSMX.value
bioturing_connector.typing.StudyType.XENIUM.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- neg_controls_percentageint, optional
Maximum number of control/negative genes percentage required for a cell to pass filtering. Default: 100
Ranging from 0 to 100
- Returns:
- Submission statusbool | str
True or Error log
- submit_study_from_s3_proteomics(group_id: str, s3_id: str | None = None, batch_info: dict = {}, study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None)[source]
Submit one Proteomics image.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- s3_idstr, Optional
ID of s3 bucket. Default: None
If s3_id is not provided, we will use the first s3 bucket configured on the platform.
- batch_infoDict[]
File path and batch name information, the path DOES NOT included the bucket path!
- Example:
- {
‘image’: ‘s3_path/image.ome.tiff’
}
- study_idstr, optional
Will be the displaying name of study (eg: CODEX_BRAIN). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- Returns:
- Submission statusbool | str
True or Error log
Submit multiple single cell - spatial folders.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- shared_s3_idstr
ID of s3 bucket.
- batch_infoList[dict]
File path and batch name information, the path DOES NOT include the bucket path configured on platform!
- Example:
- [{
‘name’: ‘study_1’,
‘folder’: ‘s3_path/study_folder’,
}, {…}]
- study_idstr, optional
Will be the displaying name of study (eg: COSMX_BRAIN). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- study_typebioturing_connector.typing.StudyType, optional
Format of the study. Default: bioturing_connector.typing.StudyType.XENIUM.value.
- Support:
bioturing_connector.typing.StudyType.VIZGEN.value
bioturing_connector.typing.StudyType.COSMX.value
bioturing_connector.typing.StudyType.XENIUM.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- neg_controls_percentageint, optional
Maximum number of control/negative genes percentage required for a cell to pass filtering. Default: 100
Ranging from 0 to 100
- Returns:
- Submission statusbool | str
True or Error log
Submit one Proteomics image.
- Parameters:
- group_idstr
ID of the group to submit the data to.
- shared_s3_idstr, Optional
ID of s3 bucket
- batch_infoDict[]
File path and batch name information, the path DOES NOT included the bucket path!
- Example:
- {
‘image’: ‘s3_path/image.ome.tiff’
}
- study_idstr, optional
Will be the displaying name of study (eg: CODEX_BRAIN). Default: uuidv4
- namestr, optional
Name of the study. Default: ‘TBD’
- authorsList[str], optional
Authors of the study. Default: []
- abstractstr, optional
Abstract of the study. Default: ‘’
- speciesbioturing_connector.typing.Species, optional
Species of the study. Default: ‘human’.
- Support:
bioturing_connector.typing.Species.HUMAN.value
bioturing_connector.typing.Species.MOUSE.value
bioturing_connector.typing.Species.PRIMATE.value
bioturing_connector.typing.Species.OTHERS.value
- min_countsint, optional
Minimum number of counts required for a cell to pass filtering. Default: 0
- min_genesint, optional
Minimum number of genes expressed required for a cell to pass filtering. Default: 0
- max_countsint, optional
Maximum number of counts required for a cell to pass filtering. Default: inf
- max_genesint, optional
Maximum number of genes expressed required for a cell to pass filtering. Default: inf
- Returns:
- Submission statusbool | str
True or Error log
- test_connection()
Test the connection to the host
- Returns:
- connection statusstr