Constants
- bioturing_connector.typing package- Module contents- ChunkSize
- InputMatrixType
- Species
- StudyType- StudyType.BBROWSER
- StudyType.BCS
- StudyType.COSMX
- StudyType.DSP
- StudyType.H5AD
- StudyType.H5_10X
- StudyType.MTX_10X
- StudyType.PROTEOMICS_OME_TIF
- StudyType.PROTEOMICS_QPTIFF
- StudyType.RDS
- StudyType.TILE_DB
- StudyType.TSV
- StudyType.VISIUM
- StudyType.VISIUM_ANN
- StudyType.VISIUM_RDS
- StudyType.VIZGEN
- StudyType.VIZGEN_V2
- StudyType.XENIUM
 
- StudyUnit
- TechnologyType
 
 
- Module contents
bioturing_connector package
bioturing_connector.bbrowserx_connector module
Python package for submitting/getting data from BBrowserX
- class bioturing_connector.bbrowserx_connector.BBrowserXConnector(host: str, token: str, ssl: bool = True)[source]
- Bases: - Connector- Create a connector object to submit/get data from BBrowserX - Parameters:
- hoststr
- The URL of the BBrowserX server, only support HTTPS connection 
- tokenstr
- The API token to verify authority. Generated in-app. 
 
 - Methods - assign_standardized_meta(species, group_id, ...)- Assign metadata value to a standardized term on ontologies tree - get_all_studies_info_in_group(species, group_id)- Get info of all studies within group. - get_barcodes(species, study_id)- Get barcodes of a study. - get_features(species, study_id)- Get features of a study. - get_metadata(species, study_id)- Get full metadata of a study. - get_ontologies_tree(species, group_id)- Get standardized ontologies tree - get_shared_s3_of_group(group_id)- Get all available groups of current token - Get all available groups of current token - Get all available groups of current token - list_all_custom_embeddings(species, study_id)- List all custom embeddings of a study - query_genes(species, study_id, gene_names[, ...])- Query genes expression of a study. - retrieve_custom_embedding(species, study_id, ...)- Retrieve an embedding array of a study - submit_metadata_from_dataframe(species, ...)- Submit metadata dataframe directly to a study - submit_metadata_from_local(species, ...)- Submit metadata to a study with local path - submit_metadata_from_s3(species, study_id, ...)- Submit metadata to a study with s3 path - submit_metadata_from_shared_s3(species, ...)- Submit metadata to a study with s3 path - submit_study_from_local(group_id, batch_info)- Submit one or multiple datasets from local / server. - submit_study_from_s3(group_id[, s3_id, ...])- Submit one or multiple datasets from s3 bucket to BBrowserX. - submit_study_from_shared_s3(group_id, ...[, ...])- Submit one or multiple datasets from s3 bucket to BBrowserX. - Test the connection to the host - upload_chunk(file_names, files, chunk_size)- meta private:
 - assign_standardized_meta(species, group_id, study_id, metadata_field, metadata_value, root_name, leaf_name)
- Assign metadata value to a standardized term on ontologies tree - Parameters:
- speciesbioturing_connector.typing.Species
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr
- ID of the group to submit the data to. 
- study_idstr
- ID of the study (uuid) 
- metadata_fieldstr
- ~ column name of meta dataframe in platform (eg: author’s tissue) 
- metadata_valuestr
- ~ metadata value within the metadata field (eg: normal lung) 
- root_namestr
- name of root in btr ontologies tree (eg: tissue) 
- leaf_namestr
- name of leaf in btr ontologies tree (eg: lung) 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - get_all_studies_info_in_group(species: str, group_id: str)
- Get info of all studies within group. - Parameters:
- speciesbioturing_connector.typing.Species.typing.Species
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr,
- Group hash id (uuid) 
 
- Returns:
- List of studies’ infoList[dict]
- In which:
- ‘uuid’: the uuid of study, which will be used in further steps, - ‘study_hash_id’: the displaying id of study on platform, - ‘created_by’: email of person who submitted the study, 
 
 
 
 - get_barcodes(species: str, study_id: str)
- Get barcodes of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- barcodesList[]
 
 
 - get_features(species: str, study_id: str)
- Get features of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- FeaturesList[]
 
 
 - get_metadata(species: str, study_id: str)
- Get full metadata of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- Metadatapd.DataFrame
 
 
 - get_ontologies_tree(species, group_id)
- Get standardized ontologies tree - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr
- ID of the group. 
 
- Returns:
- Ontologies treeDict[Dict]
- In which:
- ‘name’: name of the node, which will be used in further steps 
 
 
 
 - Get all available groups of current token - Parameters:
- group_idstr,
- Group hash id (uuid) 
 
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
- ‘id’: uuid of the s3 bucket, which will be used in further steps, - ‘bucket’: bucket of s3, - ‘prefix’: prefix of s3, 
 - ( s3_path = s3://[bucket]/[prefix]/ ) 
 
 
 - get_user_groups()
- Get all available groups of current token - Returns:
- List of groups’ infoList[dict]
- In which:
- ‘group_id’: uuid of the group, which will be used in further steps, - ‘group_name’: displaying name of the group 
 
 
 
 - get_user_s3()
- Get all available groups of current token - Returns:
- List of s3 bucket’ infoList[dict]
- In which:
- ‘id’: uuid of the s3 bucket, which will be used in further steps, - ‘bucket’: bucket of s3, - ‘prefix’: prefix of s3, 
 - ( s3_path = s3://[bucket]/[prefix]/ ) 
 
 
 - list_all_custom_embeddings(species: str, study_id: str)
- List all custom embeddings of a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- List of embeddings’ infoList[dict]
- In which:
- ‘embedding_id’: the uuid used in further steps - ‘embedding_name’: displaying name on platform 
 
 
 
 - query_genes(species: str, study_id: str, gene_names: List[str], unit: str = 'raw')
- Query genes expression of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- gene_namesList[str]
- Querying gene names. - If gene_names=[], full matrix will be returned 
- unitbioturing_connector.typing.StudyUnit. Default ‘raw’
- Expression unit - Support:
- bioturing_connector.typing.StudyUnit.UNIT_LOGNORM.value - bioturing_connector.typing.StudyUnit.UNIT_RAW.value 
 
 
- Returns:
- expression_matrixcsc_matrix
- Expression matrix, shape=(n_cells, n_genes) 
 
 
 - retrieve_custom_embedding(species: str, study_id: str, embedding_id: str)
- Retrieve an embedding array of a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- embedding_idstr,
- Embedding id (uuid) 
 
- Returns:
- embedding_arrnp.ndarray with shape (n_cells x n_dims)
 
 
 - submit_metadata_from_dataframe(species: str, study_id: str, group_id: str, df: DataFrame)
- Submit metadata dataframe directly to a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- dfpandas DataFrame,
- Barcodes must be in df.index!!!! 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_metadata_from_local(species: str, study_id: str, group_id: str, file_path: str)
- Submit metadata to a study with local path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathlocal path leading to metadata file,
- Barcodes must be in the first column - File suffix must be in .tsv/.csv 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_metadata_from_s3(species: str, study_id: str, group_id: str, file_path: str, s3_id: str | None = None)
- Submit metadata to a study with s3 path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathstr,
- Path in s3 bucket leading to metadata file, - Notes:
- Barcodes must be in the fist column - File suffix must be in .tsv/.csv - File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
- realpath: ‘s3://bucket/folder/metadata.tsv’ - inputpath: ‘folder/metadata.tsv’ 
 
 
 
- s3_idstr, Optional
- ID of s3 bucket. Default: None - If s3_id is not provided, we will use the first s3 bucket configured on the platform. 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - Submit metadata to a study with s3 path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathstr,
- Path in s3 bucket leading to metadata file, - Notes:
- Barcodes must be in the fist column - File suffix must be in .tsv/.csv - File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
- realpath: ‘s3://bucket/prefix/metadata.tsv’ - inputpath: ‘prefix/metadata.tsv’ 
 
 
 
- shared_s3_idstr
- ID of shared s3 bucket 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_study_from_local(group_id: str, batch_info: object, study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', input_matrix_type: str = 'normalized', study_type: int = 2, min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, mt_percentage: int | float | None = None, skip_dimred: bool = False, chunk_size: int = 104857600)[source]
- Submit one or multiple datasets from local / server. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- batch_infoList[dict]
- File path and batch name information. - Example:
- For h5ad format:
- [{
- ‘matrix’: ‘local_path/GSE128223_1.h5ad’ 
 - }, {…}] 
- For mtx format:
- [{
- ‘name’: ‘data_1’, - ‘matrix’: ‘local_path/data_1/matrix.mtx’, - ‘features’: ‘local_path/data_1/features.tsv’, - ‘barcodes’: ‘local_path/data_1/barcodes.tsv’, 
 - }, {…}] 
 
 
- study_idstr, optional
- Will be the displaying name of study (eg: PBMC_3K). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’ - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- input_matrix_typebioturing_connector.typing.InputMatrixType, optional
- Is the input matrix already normalized or not?. Default: ‘normalized’ - Support:
- bioturing_connector.typing.InputMatrixType.NORMALIZED.value
- (will skip BioTuring normalization, h5ad: use adata.X) 
- bioturing_connector.typing.InputMatrixType.RAW.value
- (apply BioTuring normalization, h5ad: use adata.raw.X) 
 
 
- study_typebioturing_connector.typing.StudyType, optional
- Format of the study. Default: bioturing_connector.typing.StudyType.H5AD.value - Support:
- bioturing_connector.typing.StudyType.BBROWSER.value - bioturing_connector.typing.StudyType.H5_10X.value - bioturing_connector.typing.StudyType.H5AD.value - bioturing_connector.typing.StudyType.MTX_10X.value - bioturing_connector.typing.StudyType.BCS.value - bioturing_connector.typing.StudyType.RDS.value - bioturing_connector.typing.StudyType.TSV.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
- mt_percentageint, optional
- Maximum number of mitochondria genes percentage required for a cell to pass filtering. Default: 100. - Ranging from 0 to 100 
- skip_dimredbool, optional
- Skip BioTuring pipeline if set to True (only appliable when input is a scanpy/seurat object). Default: False 
- chunk_sizebioturing_connector.typing.ChunkSize, optional
- Size of each separated chunk for uploading. Default: 104857600 - Support:
- bioturing_connector.typing.ChunkSize.CHUNK_5_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_100_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_500_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_1_GB.value 
 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_study_from_s3(group_id: str, s3_id: str | None = None, batch_info: List[dict] = [], study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', input_matrix_type: str = 'normalized', study_type: int = 2, min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, mt_percentage: int | float | None = None, skip_dimred: bool = False)[source]
- Submit one or multiple datasets from s3 bucket to BBrowserX. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- s3_idstr, Optional
- ID of s3 bucket. Default: None - If s3_id is not provided, we will use the first s3 bucket configured on the platform. 
- batch_infoList[dict]
- File path and batch name information, the path DOES NOT included the bucket path! - Example:
- For h5ad format:
- [{
- ‘matrix’: ‘s3_path/GSE128223_1.h5ad’ 
 - }, {…}] 
- For mtx format:
- [{
- ‘matrix’: ‘s3_path/data_1/matrix.mtx’, - ‘features’: ‘s3_path/data_1/features.tsv’, - ‘barcodes’: ‘s3_path/data_1/barcodes.tsv’, 
 - }, {…}] 
- For tiledb format:
- [{
- ‘folder’: ‘s3_path/GSE128223_1’ 
 - }, {…}] 
 
 
- study_idstr, optional
- Will be the displaying name of study (eg: PBMC_3K). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’ - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- skip_dimredBool, optional
- Skip BioTuring pipeline if set to True. Default: False - (only applicable when input is a scanpy/seurat object). 
- input_matrix_typebioturing_connector.typing.InputMatrixType, optional
- Is the input matrix already normalized or not?. Default: ‘normalized’ - Support:
- bioturing_connector.typing.InputMatrixType.NORMALIZED.value
- (will skip BioTuring normalization, h5ad: use adata.X) 
- bioturing_connector.typing.InputMatrixType.RAW.value
- (apply BioTuring normalization, h5ad: use adata.raw.X) 
 
 
- study_typebioturing_connector.typing.StudyType, opitonal
- Format of the study. Default: bioturing_connector.typing.StudyType.H5AD.value - Support:
- bioturing_connector.typing.StudyType.BBROWSER.value - bioturing_connector.typing.StudyType.H5_10X.value - bioturing_connector.typing.StudyType.H5AD.value - bioturing_connector.typing.StudyType.MTX_10X.value - bioturing_connector.typing.StudyType.BCS.value - bioturing_connector.typing.StudyType.RDS.value - bioturing_connector.typing.StudyType.TSV.value - bioturing_connector.typing.StudyType.TILE_DB.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
- mt_percentageint, optional
- Maximum number of mitochondria genes percentage required for a cell to pass filtering. Default: 100 - Ranging from 0 to 100 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - Submit one or multiple datasets from s3 bucket to BBrowserX. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- shared_s3_idstr
- ID of s3 bucket. 
- batch_infoList[dict]
- File path and batch name information, the path DOES NOT included the bucket path! - Example:
- For h5ad format:
- [{
- ‘matrix’: ‘s3_path/GSE128223_1.h5ad’ 
 - }, {…}] 
- For mtx format:
- [{
- ‘matrix’: ‘s3_path/data_1/matrix.mtx’, - ‘features’: ‘s3_path/data_1/features.tsv’, - ‘barcodes’: ‘s3_path/data_1/barcodes.tsv’, 
 - }, {…}] 
- For tiledb format:
- [{
- ‘folder’: ‘s3_path/GSE128223_1’ 
 - }, {…}] 
 
 
- study_idstr, optional
- Will be the displaying name of study (eg: PBMC_3K). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’ - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- skip_dimredBool, optional
- Skip BioTuring pipeline if set to True. Default: False - (only applicable when input is a scanpy/seurat object). 
- input_matrix_typebioturing_connector.typing.InputMatrixType, optional
- Is the input matrix already normalized or not?. Default: ‘normalized’ - Support:
- bioturing_connector.typing.InputMatrixType.NORMALIZED.value
- (will skip BioTuring normalization, h5ad: use adata.X) 
- bioturing_connector.typing.InputMatrixType.RAW.value
- (apply BioTuring normalization, h5ad: use adata.raw.X) 
 
 
- study_typebioturing_connector.typing.StudyType, opitonal
- Format of the study. Default: bioturing_connector.typing.StudyType.H5AD.value - Support:
- bioturing_connector.typing.StudyType.BBROWSER.value - bioturing_connector.typing.StudyType.H5_10X.value - bioturing_connector.typing.StudyType.H5AD.value - bioturing_connector.typing.StudyType.MTX_10X.value - bioturing_connector.typing.StudyType.BCS.value - bioturing_connector.typing.StudyType.RDS.value - bioturing_connector.typing.StudyType.TSV.value - bioturing_connector.typing.StudyType.TILE_DB.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
- mt_percentageint, optional
- Maximum number of mitochondria genes percentage required for a cell to pass filtering. Default: 100 - Ranging from 0 to 100 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - test_connection()
- Test the connection to the host - Returns:
- connection statusstr
 
 
 
bioturing_connector.lens_bulk_connector module
Python package for submitting/getting data from Lens Bulk
- class bioturing_connector.lens_bulk_connector.LensBulkConnector(host: str, token: str, ssl: bool = True)[source]
- Bases: - Connector- Create a connector object to submit/get data from BioTuring Lens Bulk (Visium/GeoMx DSP) - Parameters:
- hoststr
- The URL of the LENS BULK server, only support HTTPS connection 
- tokenstr
- The API token to verify authority. Generated in-app. 
 
 - Methods - assign_standardized_meta(species, group_id, ...)- Assign metadata value to a standardized term on ontologies tree - get_all_studies_info_in_group(species, group_id)- Get info of all studies within group. - get_barcodes(species, study_id)- Get barcodes of a study. - get_features(species, study_id)- Get features of a study. - get_metadata(species, study_id)- Get full metadata of a study. - get_ontologies_tree(species, group_id)- Get standardized ontologies tree - get_shared_s3_of_group(group_id)- Get all available groups of current token - Get all available groups of current token - Get all available groups of current token - list_all_custom_embeddings(species, study_id)- List all custom embeddings of a study - query_genes(species, study_id, gene_names[, ...])- Query genes expression of a study. - retrieve_custom_embedding(species, study_id, ...)- Retrieve an embedding array of a study - submit_metadata_from_dataframe(species, ...)- Submit metadata dataframe directly to a study - submit_metadata_from_local(species, ...)- Submit metadata to a study with local path - submit_metadata_from_s3(species, study_id, ...)- Submit metadata to a study with s3 path - submit_metadata_from_shared_s3(species, ...)- Submit metadata to a study with s3 path - submit_study_from_local(group_id, batch_info)- Submit one or multiple data folders. - submit_study_from_s3(group_id[, s3_id, ...])- Submit one or multiple data folders. - submit_study_from_shared_s3(group_id, ...[, ...])- Submit one or multiple data folders. - Test the connection to the host - upload_chunk(file_names, files, chunk_size)- meta private:
 - assign_standardized_meta(species, group_id, study_id, metadata_field, metadata_value, root_name, leaf_name)
- Assign metadata value to a standardized term on ontologies tree - Parameters:
- speciesbioturing_connector.typing.Species
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr
- ID of the group to submit the data to. 
- study_idstr
- ID of the study (uuid) 
- metadata_fieldstr
- ~ column name of meta dataframe in platform (eg: author’s tissue) 
- metadata_valuestr
- ~ metadata value within the metadata field (eg: normal lung) 
- root_namestr
- name of root in btr ontologies tree (eg: tissue) 
- leaf_namestr
- name of leaf in btr ontologies tree (eg: lung) 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - get_all_studies_info_in_group(species: str, group_id: str)
- Get info of all studies within group. - Parameters:
- speciesbioturing_connector.typing.Species.typing.Species
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr,
- Group hash id (uuid) 
 
- Returns:
- List of studies’ infoList[dict]
- In which:
- ‘uuid’: the uuid of study, which will be used in further steps, - ‘study_hash_id’: the displaying id of study on platform, - ‘created_by’: email of person who submitted the study, 
 
 
 
 - get_barcodes(species: str, study_id: str)
- Get barcodes of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- barcodesList[]
 
 
 - get_features(species: str, study_id: str)
- Get features of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- FeaturesList[]
 
 
 - get_metadata(species: str, study_id: str)
- Get full metadata of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- Metadatapd.DataFrame
 
 
 - get_ontologies_tree(species, group_id)
- Get standardized ontologies tree - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr
- ID of the group. 
 
- Returns:
- Ontologies treeDict[Dict]
- In which:
- ‘name’: name of the node, which will be used in further steps 
 
 
 
 - Get all available groups of current token - Parameters:
- group_idstr,
- Group hash id (uuid) 
 
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
- ‘id’: uuid of the s3 bucket, which will be used in further steps, - ‘bucket’: bucket of s3, - ‘prefix’: prefix of s3, 
 - ( s3_path = s3://[bucket]/[prefix]/ ) 
 
 
 - get_user_groups()
- Get all available groups of current token - Returns:
- List of groups’ infoList[dict]
- In which:
- ‘group_id’: uuid of the group, which will be used in further steps, - ‘group_name’: displaying name of the group 
 
 
 
 - get_user_s3()
- Get all available groups of current token - Returns:
- List of s3 bucket’ infoList[dict]
- In which:
- ‘id’: uuid of the s3 bucket, which will be used in further steps, - ‘bucket’: bucket of s3, - ‘prefix’: prefix of s3, 
 - ( s3_path = s3://[bucket]/[prefix]/ ) 
 
 
 - list_all_custom_embeddings(species: str, study_id: str)
- List all custom embeddings of a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- List of embeddings’ infoList[dict]
- In which:
- ‘embedding_id’: the uuid used in further steps - ‘embedding_name’: displaying name on platform 
 
 
 
 - query_genes(species: str, study_id: str, gene_names: List[str], unit: str = 'raw')
- Query genes expression of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- gene_namesList[str]
- Querying gene names. - If gene_names=[], full matrix will be returned 
- unitbioturing_connector.typing.StudyUnit. Default ‘raw’
- Expression unit - Support:
- bioturing_connector.typing.StudyUnit.UNIT_LOGNORM.value - bioturing_connector.typing.StudyUnit.UNIT_RAW.value 
 
 
- Returns:
- expression_matrixcsc_matrix
- Expression matrix, shape=(n_cells, n_genes) 
 
 
 - retrieve_custom_embedding(species: str, study_id: str, embedding_id: str)
- Retrieve an embedding array of a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- embedding_idstr,
- Embedding id (uuid) 
 
- Returns:
- embedding_arrnp.ndarray with shape (n_cells x n_dims)
 
 
 - submit_metadata_from_dataframe(species: str, study_id: str, group_id: str, df: DataFrame)
- Submit metadata dataframe directly to a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- dfpandas DataFrame,
- Barcodes must be in df.index!!!! 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_metadata_from_local(species: str, study_id: str, group_id: str, file_path: str)
- Submit metadata to a study with local path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathlocal path leading to metadata file,
- Barcodes must be in the first column - File suffix must be in .tsv/.csv 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_metadata_from_s3(species: str, study_id: str, group_id: str, file_path: str, s3_id: str | None = None)
- Submit metadata to a study with s3 path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathstr,
- Path in s3 bucket leading to metadata file, - Notes:
- Barcodes must be in the fist column - File suffix must be in .tsv/.csv - File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
- realpath: ‘s3://bucket/folder/metadata.tsv’ - inputpath: ‘folder/metadata.tsv’ 
 
 
 
- s3_idstr, Optional
- ID of s3 bucket. Default: None - If s3_id is not provided, we will use the first s3 bucket configured on the platform. 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - Submit metadata to a study with s3 path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathstr,
- Path in s3 bucket leading to metadata file, - Notes:
- Barcodes must be in the fist column - File suffix must be in .tsv/.csv - File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
- realpath: ‘s3://bucket/prefix/metadata.tsv’ - inputpath: ‘prefix/metadata.tsv’ 
 
 
 
- shared_s3_idstr
- ID of shared s3 bucket 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_study_from_local(group_id: str, batch_info: object, study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', study_type: int = 7, chunk_size: int = 104857600)[source]
- Submit one or multiple data folders. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- batch_infoList[dict]
- File path and batch name information - Example:
- For DSP format:
- [{
- ‘name’: ‘data_1’, - ‘matrix’: ‘local_path/data_1/matrix.xlsx’, - ‘image’: ‘local_path/data_1/image.ome.tiff’, 
 - }, {…}] 
- For Visium format:
- [{
- ‘name’: ‘data_1’, - ‘matrix’: ‘local_path/data_1/matrix.h5’, - ‘image’: ‘local_path/data_1/image.tiff’ - ‘position’: ‘local_path/data_1/tissue_positions_list.csv’ - ‘scale’: ‘local_path/data_1/scalefactors_json.json’ 
 - }, {…}] 
- For Visium RDS format:
- [{
- ‘matrix’: ‘local_path/GSE128223_1.rds’ 
 - }, {…}] 
- For Visium Anndata format:
- [{
- ‘matrix’: ‘local_path/GSE128223_1.h5ad’ 
 - }, {…}] 
 
 
- study_idstr, optional
- Will be the displaying name of study (eg: VISIUM_PBMC). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_typebioturing_connector.typing.StudyType, optional
- Format of the study. Default: bioturing_connector.typing.StudyType.DSP.value - Support:
- bioturing_connector.typing.StudyType.DSP.value - bioturing_connector.typing.StudyType.VISIUM.value - bioturing_connector.typing.StudyType.VISIUM_RDS.value - bioturing_connector.typing.StudyType.VISIUM_ANN.value 
 
- chunk_sizebioturing_connector.typing.ChunkSize, optional
- Size of each separated chunk for uploading. Default: 104857600 - Support:
- bioturing_connector.typing.ChunkSize.CHUNK_5_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_100_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_500_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_1_GB.value 
 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_study_from_s3(group_id: str, s3_id: str | None = None, batch_info: List[dict] = [], study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', study_type: int = 7)[source]
- Submit one or multiple data folders. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- s3_idstr, Optional
- ID of s3 bucket. Default: None - If s3_id is not provided, we will use the first s3 bucket configured on the platform. 
- batch_infoList[dict]
- File path and batch name information, the path DOES NOT include the bucket path! - Example:
- For DSP format:
- [{
- ‘matrix’: ‘s3_path/data_1/matrix.xlsx’, - ‘image’: ‘s3_path/data_1/image.ome.tiff’, 
 - }, {…}] 
- For Visium format:
- [{
- ‘matrix’: ‘s3_path/data_1/matrix.h5’, - ‘image’: ‘s3_path/data_1/image.tiff’ - ‘position’: ‘s3_path/data_1/tissue_positions_list.csv’ - ‘scale’: ‘s3_path/data_1/scalefactors_json.json’ 
 - }, {…}] 
- For Visium RDS format:
- [{
- ‘matrix’: ‘s3_path/GSE128223_1.rds’ 
 - }, {…}] 
- For Visium Anndata format:
- [{
- ‘matrix’: ‘s3_path/GSE128223_1.h5ad’ 
 - }, {…}] 
 
 
- study_idstr, optional
- Will be name of study (eg: VISIUM_PBMC). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_typebioturing_connector.typing.StudyType, optional
- Format of the study. Default: bioturing_connector.typing.StudyType.DSP.value - Support:
- bioturing_connector.typing.StudyType.DSP.value - bioturing_connector.typing.StudyType.VISIUM.value - bioturing_connector.typing.StudyType.VISIUM_RDS.value - bioturing_connector.typing.StudyType.VISIUM_ANN.value 
 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - Submit one or multiple data folders. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- shared_s3_idstr
- ID of s3 bucket. 
- batch_infoList[dict]
- File path and batch name information, the path DOES NOT include the bucket path! - Example:
- For DSP format:
- [{
- ‘matrix’: ‘s3_path/data_1/matrix.xlsx’, - ‘image’: ‘s3_path/data_1/image.ome.tiff’, 
 - }, {…}] 
- For Visium format:
- [{
- ‘matrix’: ‘s3_path/data_1/matrix.h5’, - ‘image’: ‘s3_path/data_1/image.tiff’ - ‘position’: ‘s3_path/data_1/tissue_positions_list.csv’ - ‘scale’: ‘s3_path/data_1/scalefactors_json.json’ 
 - }, {…}] 
- For Visium RDS format:
- [{
- ‘matrix’: ‘s3_path/GSE128223_1.rds’ 
 - }, {…}] 
- For Visium Anndata format:
- [{
- ‘matrix’: ‘s3_path/GSE128223_1.h5ad’ 
 - }, {…}] 
 
 
- study_idstr, optional
- Will be name of study (eg: VISIUM_PBMC). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.NON_HUMAN_PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_typebioturing_connector.typing.StudyType, optional
- Format of the study. Default: bioturing_connector.typing.StudyType.DSP.value - Support:
- bioturing_connector.typing.StudyType.DSP.value - bioturing_connector.typing.StudyType.VISIUM.value - bioturing_connector.typing.StudyType.VISIUM_RDS.value - bioturing_connector.typing.StudyType.VISIUM_ANN.value 
 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - test_connection()
- Test the connection to the host - Returns:
- connection statusstr
 
 
 
bioturing_connector.lens_sc_connector module
Python package for submitting/getting data from Lens SC
- class bioturing_connector.lens_sc_connector.LensSCConnector(host: str, token: str, ssl: bool = True)[source]
- Bases: - Connector- Create a connector object to submit/get data from BioTuring Lens Single-cell (Xenium/Cosmx/Vizgen/Proteomics) - Parameters:
- hoststr
- The URL of the LENS SC server, only support HTTPS connection 
- tokenstr
- The API token to verify authority. Generated in-app. 
 
 - Methods - assign_standardized_meta(species, group_id, ...)- Assign metadata value to a standardized term on ontologies tree - get_all_studies_info_in_group(species, group_id)- Get info of all studies within group. - get_barcodes(species, study_id)- Get barcodes of a study. - get_features(species, study_id)- Get features of a study. - get_metadata(species, study_id)- Get full metadata of a study. - get_ontologies_tree(species, group_id)- Get standardized ontologies tree - get_shared_s3_of_group(group_id)- Get all available groups of current token - Get all available groups of current token - Get all available groups of current token - list_all_custom_embeddings(species, study_id)- List all custom embeddings of a study - query_genes(species, study_id, gene_names[, ...])- Query genes expression of a study. - retrieve_custom_embedding(species, study_id, ...)- Retrieve an embedding array of a study - submit_metadata_from_dataframe(species, ...)- Submit metadata dataframe directly to a study - submit_metadata_from_local(species, ...)- Submit metadata to a study with local path - submit_metadata_from_s3(species, study_id, ...)- Submit metadata to a study with s3 path - submit_metadata_from_shared_s3(species, ...)- Submit metadata to a study with s3 path - submit_study_from_local_lens_sc(group_id, ...)- Submit multiple single cell - spatial folders. - submit_study_from_local_proteomics(group_id, ...)- Submit one Proteomics image. - submit_study_from_s3_lens_sc(group_id[, ...])- Submit multiple single cell - spatial folders. - submit_study_from_s3_proteomics(group_id[, ...])- Submit one Proteomics image. - submit_study_from_shared_s3_lens_sc(...[, ...])- Submit multiple single cell - spatial folders. - submit_study_from_shared_s3_proteomics(group_id)- Submit one Proteomics image. - Test the connection to the host - upload_chunk(file_names, files, chunk_size)- meta private:
 - assign_standardized_meta(species, group_id, study_id, metadata_field, metadata_value, root_name, leaf_name)
- Assign metadata value to a standardized term on ontologies tree - Parameters:
- speciesbioturing_connector.typing.Species
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr
- ID of the group to submit the data to. 
- study_idstr
- ID of the study (uuid) 
- metadata_fieldstr
- ~ column name of meta dataframe in platform (eg: author’s tissue) 
- metadata_valuestr
- ~ metadata value within the metadata field (eg: normal lung) 
- root_namestr
- name of root in btr ontologies tree (eg: tissue) 
- leaf_namestr
- name of leaf in btr ontologies tree (eg: lung) 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - get_all_studies_info_in_group(species: str, group_id: str)
- Get info of all studies within group. - Parameters:
- speciesbioturing_connector.typing.Species.typing.Species
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr,
- Group hash id (uuid) 
 
- Returns:
- List of studies’ infoList[dict]
- In which:
- ‘uuid’: the uuid of study, which will be used in further steps, - ‘study_hash_id’: the displaying id of study on platform, - ‘created_by’: email of person who submitted the study, 
 
 
 
 - get_barcodes(species: str, study_id: str)
- Get barcodes of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- barcodesList[]
 
 
 - get_features(species: str, study_id: str)
- Get features of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- FeaturesList[]
 
 
 - get_metadata(species: str, study_id: str)
- Get full metadata of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- Metadatapd.DataFrame
 
 
 - get_ontologies_tree(species, group_id)
- Get standardized ontologies tree - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- group_idstr
- ID of the group. 
 
- Returns:
- Ontologies treeDict[Dict]
- In which:
- ‘name’: name of the node, which will be used in further steps 
 
 
 
 - Get all available groups of current token - Parameters:
- group_idstr,
- Group hash id (uuid) 
 
- Returns:
- List of s3 bucket’ infoList[dict]
- In which:
- ‘id’: uuid of the s3 bucket, which will be used in further steps, - ‘bucket’: bucket of s3, - ‘prefix’: prefix of s3, 
 - ( s3_path = s3://[bucket]/[prefix]/ ) 
 
 
 - get_user_groups()
- Get all available groups of current token - Returns:
- List of groups’ infoList[dict]
- In which:
- ‘group_id’: uuid of the group, which will be used in further steps, - ‘group_name’: displaying name of the group 
 
 
 
 - get_user_s3()
- Get all available groups of current token - Returns:
- List of s3 bucket’ infoList[dict]
- In which:
- ‘id’: uuid of the s3 bucket, which will be used in further steps, - ‘bucket’: bucket of s3, - ‘prefix’: prefix of s3, 
 - ( s3_path = s3://[bucket]/[prefix]/ ) 
 
 
 - list_all_custom_embeddings(species: str, study_id: str)
- List all custom embeddings of a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
 
- Returns:
- List of embeddings’ infoList[dict]
- In which:
- ‘embedding_id’: the uuid used in further steps - ‘embedding_name’: displaying name on platform 
 
 
 
 - query_genes(species: str, study_id: str, gene_names: List[str], unit: str = 'raw')
- Query genes expression of a study. - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- gene_namesList[str]
- Querying gene names. - If gene_names=[], full matrix will be returned 
- unitbioturing_connector.typing.StudyUnit. Default ‘raw’
- Expression unit - Support:
- bioturing_connector.typing.StudyUnit.UNIT_LOGNORM.value - bioturing_connector.typing.StudyUnit.UNIT_RAW.value 
 
 
- Returns:
- expression_matrixcsc_matrix
- Expression matrix, shape=(n_cells, n_genes) 
 
 
 - retrieve_custom_embedding(species: str, study_id: str, embedding_id: str)
- Retrieve an embedding array of a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- embedding_idstr,
- Embedding id (uuid) 
 
- Returns:
- embedding_arrnp.ndarray with shape (n_cells x n_dims)
 
 
 - submit_metadata_from_dataframe(species: str, study_id: str, group_id: str, df: DataFrame)
- Submit metadata dataframe directly to a study - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- dfpandas DataFrame,
- Barcodes must be in df.index!!!! 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_metadata_from_local(species: str, study_id: str, group_id: str, file_path: str)
- Submit metadata to a study with local path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathlocal path leading to metadata file,
- Barcodes must be in the first column - File suffix must be in .tsv/.csv 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_metadata_from_s3(species: str, study_id: str, group_id: str, file_path: str, s3_id: str | None = None)
- Submit metadata to a study with s3 path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathstr,
- Path in s3 bucket leading to metadata file, - Notes:
- Barcodes must be in the fist column - File suffix must be in .tsv/.csv - File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
- realpath: ‘s3://bucket/folder/metadata.tsv’ - inputpath: ‘folder/metadata.tsv’ 
 
 
 
- s3_idstr, Optional
- ID of s3 bucket. Default: None - If s3_id is not provided, we will use the first s3 bucket configured on the platform. 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - Submit metadata to a study with s3 path - Parameters:
- speciesbioturing_connector.typing.Species,
- Species of the study. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_idstr,
- uuidv4 of study 
- group_idstr,
- ID of the group containing study id 
- file_pathstr,
- Path in s3 bucket leading to metadata file, - Notes:
- Barcodes must be in the fist column - File suffix must be in .tsv/.csv - File_path DOES NOT contain s3_bucket path configured on the platform
- E.g:
- realpath: ‘s3://bucket/prefix/metadata.tsv’ - inputpath: ‘prefix/metadata.tsv’ 
 
 
 
- shared_s3_idstr
- ID of shared s3 bucket 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_study_from_local_lens_sc(group_id: str, batch_info: List[dict], study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', study_type: int = 11, min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, neg_controls_percentage: int | float | None = None, chunk_size: int = 104857600)[source]
- Submit multiple single cell - spatial folders. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- batch_infoList[dict]
- File path and batch name information - Example:
- [{
- ‘name’: ‘dataset_1’, - ‘folder’: ‘server_path/dataset_folder_1’, 
 - }, {…}] 
 
- study_idstr, optional
- Will be the displaying name of study (eg: COSMX_BRAIN). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_typebioturing_connector.typing.StudyType, optional
- Format of the study. Default: bioturing_connector.typing.StudyType.XENIUM.value - Support:
- bioturing_connector.typing.StudyType.VIZGEN.value - bioturing_connector.typing.StudyType.COSMX.value - bioturing_connector.typing.StudyType.XENIUM.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
- neg_controls_percentageint, optional
- Maximum number of control/negative genes percentage required for a cell to pass filtering. Default: 100 - Ranging from 0 to 100 
- chunk_sizebioturing_connector.typing.ChunkSize, optional
- Size of each separated chunk for uploading. Default: 104857600 - Support:
- bioturing_connector.typing.ChunkSize.CHUNK_5_MB.value bioturing_connector.typing.ChunkSize.CHUNK_100_MB.value bioturing_connector.typing.ChunkSize.CHUNK_500_MB.value bioturing_connector.typing.ChunkSize.CHUNK_1_GB.value 
 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_study_from_local_proteomics(group_id: str, batch_info: dict, study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, chunk_size: int = 104857600)[source]
- Submit one Proteomics image. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- batch_infoList[]
- File path and batch name information - Example:
- {
- ‘image’: ‘server_path/image.ome.tiff’ 
 - } 
 
- study_idstr, optional
- Will be the displaying name of study (eg: CODEX_BRAIN). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’ - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
- chunk_sizebioturing_connector.typing.ChunkSize, optional
- Size of each separated chunk for uploading. Default: 104857600. - Support:
- bioturing_connector.typing.ChunkSize.CHUNK_5_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_100_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_500_MB.value - bioturing_connector.typing.ChunkSize.CHUNK_1_GB.value 
 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_study_from_s3_lens_sc(group_id: str, s3_id: str | None = None, batch_info: List[dict] = [], study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', study_type: int = 11, min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None, neg_controls_percentage: int | float | None = None)[source]
- Submit multiple single cell - spatial folders. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- s3_idstr, Optional
- ID of s3 bucket. Default: None - If s3_id is not provided, we will use the first s3 bucket configured on the platform. 
- batch_infoList[dict]
- File path and batch name information, the path DOES NOT include the bucket path configured on platform! - Example:
- [{
- ‘name’: ‘study_1’, - ‘folder’: ‘s3_path/study_folder’, 
 - }, {…}] 
 
- study_idstr, optional
- Will be the displaying name of study (eg: COSMX_BRAIN). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_typebioturing_connector.typing.StudyType, optional
- Format of the study. Default: bioturing_connector.typing.StudyType.XENIUM.value. - Support:
- bioturing_connector.typing.StudyType.VIZGEN.value - bioturing_connector.typing.StudyType.COSMX.value - bioturing_connector.typing.StudyType.XENIUM.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
- neg_controls_percentageint, optional
- Maximum number of control/negative genes percentage required for a cell to pass filtering. Default: 100 - Ranging from 0 to 100 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - submit_study_from_s3_proteomics(group_id: str, s3_id: str | None = None, batch_info: dict = {}, study_id: str | None = None, name: str = 'TBD', authors: List[str] = [], abstract: str = '', species: str = 'human', min_counts: int | None = None, min_genes: int | None = None, max_counts: int | None = None, max_genes: int | None = None)[source]
- Submit one Proteomics image. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- s3_idstr, Optional
- ID of s3 bucket. Default: None - If s3_id is not provided, we will use the first s3 bucket configured on the platform. 
- batch_infoDict[]
- File path and batch name information, the path DOES NOT included the bucket path! - Example:
- {
- ‘image’: ‘s3_path/image.ome.tiff’ 
 - } 
 
- study_idstr, optional
- Will be the displaying name of study (eg: CODEX_BRAIN). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - Submit multiple single cell - spatial folders. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- shared_s3_idstr
- ID of s3 bucket. 
- batch_infoList[dict]
- File path and batch name information, the path DOES NOT include the bucket path configured on platform! - Example:
- [{
- ‘name’: ‘study_1’, - ‘folder’: ‘s3_path/study_folder’, 
 - }, {…}] 
 
- study_idstr, optional
- Will be the displaying name of study (eg: COSMX_BRAIN). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- study_typebioturing_connector.typing.StudyType, optional
- Format of the study. Default: bioturing_connector.typing.StudyType.XENIUM.value. - Support:
- bioturing_connector.typing.StudyType.VIZGEN.value - bioturing_connector.typing.StudyType.COSMX.value - bioturing_connector.typing.StudyType.XENIUM.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
- neg_controls_percentageint, optional
- Maximum number of control/negative genes percentage required for a cell to pass filtering. Default: 100 - Ranging from 0 to 100 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - Submit one Proteomics image. - Parameters:
- group_idstr
- ID of the group to submit the data to. 
- shared_s3_idstr, Optional
- ID of s3 bucket 
- batch_infoDict[]
- File path and batch name information, the path DOES NOT included the bucket path! - Example:
- {
- ‘image’: ‘s3_path/image.ome.tiff’ 
 - } 
 
- study_idstr, optional
- Will be the displaying name of study (eg: CODEX_BRAIN). Default: uuidv4 
- namestr, optional
- Name of the study. Default: ‘TBD’ 
- authorsList[str], optional
- Authors of the study. Default: [] 
- abstractstr, optional
- Abstract of the study. Default: ‘’ 
- speciesbioturing_connector.typing.Species, optional
- Species of the study. Default: ‘human’. - Support:
- bioturing_connector.typing.Species.HUMAN.value - bioturing_connector.typing.Species.MOUSE.value - bioturing_connector.typing.Species.PRIMATE.value - bioturing_connector.typing.Species.OTHERS.value 
 
- min_countsint, optional
- Minimum number of counts required for a cell to pass filtering. Default: 0 
- min_genesint, optional
- Minimum number of genes expressed required for a cell to pass filtering. Default: 0 
- max_countsint, optional
- Maximum number of counts required for a cell to pass filtering. Default: inf 
- max_genesint, optional
- Maximum number of genes expressed required for a cell to pass filtering. Default: inf 
 
- Returns:
- Submission statusbool | str
- True or Error log 
 
 
 - test_connection()
- Test the connection to the host - Returns:
- connection statusstr